ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences

نویسندگان

  • Yi-Nan Gong
  • Cliff Guy
  • Hannes Olauson
  • Jan Ulrich Becker
  • Mao Yang
  • Patrick Fitzgerald
  • Andreas Linkermann
  • Douglas R. Green
چکیده

The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) results in plasma membrane (PM) disruption and a form of regulated necrosis, called necroptosis. Here, we show that, during necroptosis, MLKL-dependent calcium (Ca2+) influx and phosphatidylserine (PS) exposure on the outer leaflet of the plasma membrane preceded loss of PM integrity. Activation of MLKL results in the generation of broken, PM "bubbles" with exposed PS that are released from the surface of the otherwise intact cell. The ESCRT-III machinery is required for formation of these bubbles and acts to sustain survival of the cell when MLKL activation is limited or reversed. Under conditions of necroptotic cell death, ESCRT-III controls the duration of plasma membrane integrity. As a consequence of the action of ESCRT-III, cells undergoing necroptosis can express chemokines and other regulatory molecules and promote antigenic cross-priming of CD8+ T cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Die later with ESCRT!

The consequences of necroptosis depend on immunomodulatory molecules, the expression of which requires time before the burst of a cell. Gong et al. now provide evidence for ESCRT-III-mediated plasma membrane repair to extend the time to death during necroptosis. Regulated cell death is not restricted to apoptosis, but includes several forms of regulated necrosis. The best characterized signalin...

متن کامل

Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death.

Necroptosis is considered to be complementary to the classical caspase-dependent programmed cell death pathway, apoptosis. The pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) is an essential effector protein in the necroptotic cell death pathway downstream of the protein kinase Receptor Interacting Protein Kinase-3 (RIPK3). How MLKL causes cell death is unclear, however RIPK3-mediated phos...

متن کامل

Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner.

Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously s...

متن کامل

RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL

RIPK3 and its substrate MLKL are essential for necroptosis, a lytic cell death proposed to cause inflammation via the release of intracellular molecules. Whether and how RIPK3 might drive inflammation in a manner independent of MLKL and cell lysis remains unclear. Here we show that following LPS treatment, or LPS-induced necroptosis, the TLR adaptor protein TRIF and inhibitor of apoptosis prote...

متن کامل

Execution of RIPK3-regulated necrosis

Necroptosis is a form of regulated necrotic cell death that is mediated by receptor-interacting protein 1 (RIP1) and RIP3 kinases. Diverse receptors, including death receptors, Toll-like receptors, interferon receptors, and DAI DNA receptors are able to trigger necroptosis. The newly identified MLKL protein functions downstream of RIP1/RIP3 and is essential for the execution of necroptosis. Stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 169  شماره 

صفحات  -

تاریخ انتشار 2017